Properties of Electrical Materials
A. Semiconductor materials (e.g., tunneling, diffusion/drift current, energy bands, doping bands, p-n theory) B. Electrical (e.g., conductivity, resistivity, permittivity, magnetic permeability, noise) C. Thermal (e.g., conductivity, expansion)
Computer Networks + Electromagnetics
A. Routing and switching B. Network topologies (e.g., mesh, ring, star) C. Network types (e.g., LAN, WAN, internet) D. Network models (e.g., OSI, TCP/IP) E. Network intrusion detection and prevention (e.g., firewalls, endpoint detection, network detection) F. Security (e.g., port scanning, network vulnerability testing, web vulnerability testing, penetration testing, security triad)
A. Electrostatics/magnetostatics (e.g., spatial relationships, vector analysis) B. Electrodynamics (e.g., Maxwell equations, wave propagation) C. Transmission lines (high frequency)
Linear Systems
A. Frequency/transient response B. Resonance C. Laplace transforms D. Transfer functions
Signal Processing
A. Sampling (e.g., aliasing, Nyquist theorem) B. Analog filters C. Digital filters (e.g., difference equations, Z-transforms)
Mathematics
A. Algebra and trigonometry B. Complex numbers C. Discrete mathematics D. Analytic geometry E. Calculus (e.g., differential, integral, single-variable, multivariable) F. Ordinary differential equations G. Linear algebra H. Vector analysis
Probability and Statistics
A. Measures of central tendencies and dispersions (e.g., mean, mode, standard deviation) B. Probability distributions (e.g., discrete, continuous, normal, binomial, conditional probability) C. Expected value (weighted average)
Circuit Analysis (DC and AC Steady State)
A. KCL, KVL B. Series/parallel equivalent circuits C. Thevenin and Norton theorems D. Node and loop analysis E. Waveform analysis (e.g., RMS, average, frequency, phase, wavelength) F. Phasors G. Impedance
Electronics + Power Systems
A. Models, biasing, and performance of discrete devices (e.g., diodes, transistors, thyristors) B. Amplifiers (e.g., single-stage/common emitter, differential, biasing) C. Operational amplifiers (e.g., ideal, nonideal) D. Instrumentation (e.g., measurements, data acquisition, transducers) E. Power electronics (e.g., rectifiers, inverters, converters)
A. Power theory (e.g., power factor, single and three phase, voltage regulation) B. Transmission and distribution (e.g., real and reactive losses, efficiency, voltage drop, delta and wye connections) C. Transformers (e.g., single-phase and three-phase connections, reflected impedance) D. Motors and generators (e.g., synchronous, induction, dc)
Engineering Economics
A. Time value of money (e.g., present value, future value, annuities) B. Cost estimation C. Risk identification D. Analysis (e.g., cost-benefit, trade-off, break-even)
Digital Systems + Communications
A. Number systems B. Boolean logic C. Logic gates and circuits D. Logic minimization (e.g., SOP, POS, Karnaugh maps) E. Flip-flops and counters F. Programmable logic devices and gate arrays G. State machine design H. Timing (e.g., diagrams, asynchronous inputs, race conditions and other hazards)
A. Basic modulation/demodulation concepts (e.g., AM, FM, PCM) B. Fourier transforms/Fourier series C. Multiplexing (e.g., time division, frequency division, code division) D. Digital communications
Control Systems + Ethics and Professional Practice
A. Block diagrams (e.g. feedforward, feedback) B. Bode plots C. Closed-loop response, open-loop response, and stability D. Controller performance (e.g., steady-state errors, settling time, overshoot)
A. Codes of ethics (e.g., professional and technical societies, NCEES Model Law and Model Rules) B. Intellectual property (e.g., copyright, trade secrets, patents, trademarks) C. Safety (e.g., grounding, material safety data, PPE, radiation protection)